CCS Potential on the Scotian Shelf, Offshore Nova Scotia

Bill Richards, Helen Cen, Natasha MacAdam, Adam MacDonald, Grant Wach

April 2023

Sable Island from the west, 44 km long, ~ 175km offshore https://www.dal.ca/sites/hydro/SableResearch.html

Key Points & Outline

2005 Scotian Shelf identified as highly prospective (IPCC)

- Incorporates screening & ranking of Canadian Basins (Bachu, 2003)
- > 2010 Nova Scotian Basins qualitatively screened for CCS (Wach et al)
 - Low potential in Carboniferous basins and Scotian Slope (1 slide each here)
 - 2014 CCS1 well drilled near Sydney airport: low effective PHI-K
 - CCS potential limited to salt caverns and coal seams
 - Some potential in Fundy Basin (1 slide) & Orpheus Graben (not assessed here)
 - High potential on Scotian Shelf (bulk of this talk)

> 2021 Assessments of Scotian Shelf: DNRR, Dal., & EAGE student comps.

- Prompted by published atlases worldwide used similar methodologies
- World-class deep saline aquifers: 100-200 Gt, >1000 Tt upside; 3% E
- Modest capacity in 8 depleted & 15 stranded gas fields: total ~200 Mt; 75% E
- 2022 Ranked fields & preliminary dynamic modeling of highgraded area
 - Understanding entire plumbing system & pressure regime is critical
- 2023 Recommend expert static & dynamic modeling; rock physics for 4D monitoring; project screening (pilot -> regional -> continental)

i Carbo

Scotian Slope

Scotian Shelf

Sable Island

Gas Fields Strande Gas Fields Producin

> Sable Island Delt Abenaki Bank

Nova Scotian Basins - Effective Porosity-Permeability (PHI-K) Lab Data from core

- Scotian Shelf (Red): High quality subsurface reservoirs / aquifers. Excellent for CCS.
- > Onshore Carboniferous Basins (Yellow): Low quality. Poor CCS targets.
- > Onshore outcrops (light blue): alluring but misleading. Weathered and/or not at subsurface conditions.

* E = Storage Efficiency. Mt = 10^6 tonnes, Gt = 10^9 tonnes. Tt 10^{12} tonnes.

Maritimes Basins: Sydney Basin 2017 PFA; New Brunswick production

- > 2017 Sydney Basin PFA (Westphalian: Cumberland Mabou)
 - 5 wells: CNSOPB Avg.effective porosities 0.1 3.3%
 - Beicip-Franlab Avg. effective porosities 0.6 2.7%

	PHIE values f petrop interpr	from CNSOPB hysical etation	PHIE value petrop interpr	es from BF ohysical retation	PHIT values from BF petrophysical interpretation			
Formation	Max	Avg	Max	Avg	Min	Max	Avg	
Pictou	10%	0,5%	10%	0,8%	5%	21%	6,1%	
Sydney Mines	10%	0,3%	10%	1,0%	1%	23%	6,4%	
Waddens Cove	10%	0,4%	10%	2,7%	296	19%	6,4%	
South Bar	10%	0,3%	10%	2,7%	196	19%	5,7%	
Silver Mines	10%	0,1%	10%	0,8%	296	17%	6,5%	
Point Edward	10%	0,0%	10%	1,5%	0%	24%	5,7%	
Cape Dauphin	096	0,0%	6%	0,6%	296	9%	6%	
Woodbine Road	096	0,0%	10%	1,2%	196	13%	6%	
Meadows Road	8%	3,3%	10%	1,4%	0%	14%	4,4%	
Sydney River	10%	0,1%	9%	2,6%	096	12%	6,2%	

- > HC fields in New Brunswick
 - Tournaisian: Albert / Horton
 - Hydraulic fracking at McCully
 - Nitroglycerine at Stoney Creek
 - Log porosities 4-8%
 - In situ permeabilites < 0.1 mD

(LeBlanc et al, 2011)

Scotian Slope

- Storage capacity limited by:
 - Lack of effective porosity and permeability
 - Overpressure (via mud weights limited tests)

Net sand repo	orted by CNS	SOEB				
Name		RT(m)	WD(m)	TD(m)	Net Sand (m)	NTG
Annapolis	G-24	35.5	1711	6182	42	0.0095
Aspy	D-11/A	31.0	2771	7400	11	0.0024
Balvenie	B-79	25.0	1803	4750	2	0.0007
Cheshire	L-97/A	31.7	2142	7068	0	0.0000
Crimson	F-81	21.4	2092	6676	20	0.0044
Monterey Jack	E-43	31.7	2118	6692	0	0.0000
Newburn	H-23	24.0	977	6070	40	0.0079
Shelburne	G-29	25.0	1154	4005	5	0.0018
Shubenacadie	H-100	24.1	1477	4200	0	0.0000
Tantallon	M-41	24.0	1516	5602	17	0.0042
Torbrook	C-15	25.0	1675	3600	0	0.0000
Weymouth	A-45	25.0	1690	6520	0	0.0000
		323	21123	68765	137	0.0029

Fundy Basin: Scoping volumes, based on John Wade et al 1996 (maps; 2 wells)

Wolfville Clastics – projecting well parameters basin-wide (typical clastic storage efficiency E).

	Length	Width	Area	Cumulative Net Thickness	NRV	Average Porosity	NPV	Storage Efficiency	Storage Volume	Dens	Storage Capacity
	km	km	10 ⁹ m ²	m	10 ⁹ m ³	fraction	10 ⁹ m ³	fraction	10 ⁹ m ³	gm/cc	Gt
Wolfville - Cape Spencer Well	180	60	10.8	100	1080	0.2	216	0.03	6	0.75	4.9
Wolfville - Chinampas Well	180	60	10.8	280	3024	0.1	302	0.03	9	0.75	6.8

> N. Mountain Basalt : Storage resource, caprock or neither? Phi from groundwater study. (E is a guess)

	Length	Width	Area	Average	GRV	Average	NRV	Average	NPV	Storage	Storage	Dens	Storage
				Thickness		NTG		Porosity		Efficiency	Volume		Capacity
	km	km	10 ⁹ m ²	m	10 ⁹ m ³	fraction	10 ⁹ m ³	fraction	10 ⁹ m ³	fraction	10 ⁹ m ³	gm/cc	Gt
North Mountain Basalt	180	60	10.8	300	3240	0.6	1944	0.07	136	0.05	7	0.75	5.1
North Mountain Basalt	180	60	10.6	300	3180	0.4	1272	0.05	64	0.03	2	0.75	1.4
North Mountain Basalt	180	60	10.6	300	3180	0.2	636	0.03	19	0.01	0	0.75	0.1

Geological unit Hydraulic Porosity Specific conductivity storage (K, m/s) (n, %) (S_s, m^{-1}) North Mountain Fm. 10-10-5 10-4 Wolfville Fm. 5×10-5 28 10-3 Tille 20 10^{-3} 10 Glaciolacustrine deposits 15 10^{-2} Glaciofluvial deposits 10-3 35 10^{-5} 35 5×10-3 Colluviums

- **Reasonable** ~ 5 Gt potential in Wolfville. Speculative in basalt (much older than Icelandic basalts).
- > Containment & environmental may be issues currently building a geocellular model.

Wach et al, 2009

Gauthier et al, 2009

Background: CCS Atlases

- > N. American & European atlases stimulated the 2021 assessments
- Major Scotian Shelf potential in deep saline aquifers

Base Case CCS Ca	apacity (Gt)		
Area	Aquifers (Gt)	Fields (Gt)	Source
GOM	3198	14.8	2012 USDOE, NRC, SdE
NE USA	479		2019 Batelle
Carolinas	317		2012 USDOE, NRC, SdE
Scotian Shelf	100-200	0.1	2021 DRR, Dalhousie
WCB & WB	165	24.4	2012 USDOE, NRC, SdE
UK	70	8	2014, Bentham et al
Norway	45	13	2021, NPD

- Modest potential for fields- due to low HC endowment
 - Will address

N.America 2012 (US DOE, NRC, Secretaria de Energia)

UK (Bentham et al, 2014)

Norway (NPD)

Background: NE USA Batelle 2019 CCS Study (US DOE, Gupta et al 2019)

- Became aware of this study after the 2021 assessments
- Same geologic intervals as Scotian Shelf
- Similar approach
- Less conservative E, depth range & PHI cut-off
- 150-479-1136 Gt

Scotian Margin: CCS Play Elements related to Regional Geology

- Low latitude rift-passive margin
 - Massive hydrostatic, monoclinal shelf aquifers (storage) below a regional marl / mud-prone wedge (ulitmate containment)
- Best opportunities are in U. & M. Missisauga fluvio-deltaic sandstones
 - Below Naskapi Shale (sub-regional containment)
 - Above & below oolitic "O" Marker (local containment)
- Aquifer subcrops are good news (hydrostatic systems) and bad news (risk of leakage via fluvio-deltaic conduits due to over-injection)
 - Requires expert static & dynamic modeling & new data
- Overpressure is the "enemy" for geomechanical risk
 - Fortunately mostly confined to mud-prone slope and lower parts of shelfmargin expansion trends - act as "release valves" to the hydrostatic shelf
- Injectivity
 - Venture 1 well set record gas production rate in Canada (>100 MMCFPD)
 - Well-known permeability / transmissibility from tests, production and cores

Hydrostatic shelf – Transitional shelf-margins – Overpressured Slope

Scotian Margin: CCS Play Elements related to Regional Geology

- Low latitude rift-passive margin
 - Massive hydrostatic, monoclinal shelf aquifers (storage) below a regional marl / mud-prone wedge (ulitmate containment)
- Best opportunities are in U. & M. Missisauga fluvio-deltaic sandstones
 - Below Naskapi Shale (sub-regional containment)
 - Above & below oolitic "O" Marker (local containment)
- Aquifer subcrops are good news (hydrostatic systems) and bad news (risk of leakage via fluvio-deltaic conduits due to over-injection)
 - Requires expert static & dynamic modeling & new data
- Overpressure is the "enemy" for geomechanical risk
 - Fortunately mostly confined to mud-prone slope and lower parts of shelfmargin expansion trends - act as release valves to the hydrostatic shelf
- Injectivity
 - Well-known permeability / transmissibility from tests, production and cores
 - Venture 1 well set record gas production rate in Canada (>100 MMCFPD)

Hydrostatic shelf – Transitional shelf-margins – Overpressured Slope

Why is the Scotian Shelf HC endowment so small? (& depleted field CCS)

- Important to understand the whole plumbing system and underlying geologic controls
- Proven resource ~4 TCF recoverable gas (~2 TCF produced); ~60 MBO (~45 produced)*.
- > No issue with underfill 2011 OERA PFA has ~1000 TCF generated within ~100 km of Sable Is.
- Sable max. column heights (~200m) are much less than JdA & MD (~600m+) for two key reasons:
 - No 2nd & 3rd phase tectonics & with long term high sediment supply seals are relatively thin
- Shelf-margin rollover anticlines (18 of 25 fields) have limited dip closure heights (10-200m)
 - Fine balance between reservoir thickness, seal thickness & extensional crestal fault offsets
 - Immobile residual gas in breached traps same mechanism as CCS in deep saline aquifers
- No stratigraphic traps discovered on the Scotian Shelf
 - Clastic reservoir quality improves updip (proximally) & carbonate bank "dips wrong way"
 - Opposite to WCB foreland basin e.g. updip shale-out of clastic shorelines & carbonates
- No Cenozoic reservoir influx like North Sea or Mackenzie Delta / GOM (Laramide tectonics)
 - Again related to lack of late tectonics in hinterland
 - Good news for CCS topseal
- Bad news is that we may find unexpected hydrocarbon traps updip (probably oil)
 - Fluvio-estuarine channel traps like Glauconitic channel play in Alberta
 - Regional biogenic subcrop traps like Kern River in California or Athabasca anticline

Comparison of Maximum Hydrocarbon Column Heights

Schematic X-section - Venture Field expansion trend

*CNSOPB: Cumulative Production + 2014 SDL study P50 resources * Fortune Bay, White Rose, Nautilus, Richards Shale

Why is the Scotian Shelf HC endowment so small? (& depleted field CCS)

Important to understand the whole system – and underlying geologic controls

- Proven resource ~4 TCF recoverable gas (~2 TCF produced); ~60 MBO (~45 produced)*.
- > No issue with underfill 2011 OERA PFA has ~1000 TCF generated within ~100 km of Sable Is.
- Sable max. column heights (~200m) are much less than JdA & MD (~600m+) for two key reasons:
 - No 2nd & 3rd phase tectonics & with long term high sediment supply seals are relatively thin
- Shelf-margin rollover anticlines (18 of 25 fields) have limited dip closure heights (10-200m)
 - Fine balance between reservoir thickness, seal thickness & extensional crestal fault offsets
 - Immobile residual gas in breached traps same mechanism as CCS in deep saline aquifers

No stratigraphic traps discovered on the Scotian Shelf

- Clastic reservoir quality improves updip (proximally) & carbonate bank "dips wrong way"
- Opposite to WCB foreland basin e.g. updip shale-out of clastic shorelines & carbonates
- No Cenozoic reservoir influx like North Sea or Mackenzie Delta / GOM (Laramide tectonics)
 - Again related to lack of late tectonics in hinterland
 - Good news for CCS topseal
- Bad news is that we may find unexpected hydrocarbon traps updip (probably oil)
 - Fluvio-estuarine channel traps like Glauconitic channel play in Alberta
 - Regional biogenic subcrop traps like Kern River in California or Athabasca anticline

Comparison of Maximum Hydrocarbon Column Heights

Schematic X-section - Venture Field expansion trend

*CNSOPB: Cumulative Production + 2014 SDL study P50 resources * Fortune Bay, White Rose, Nautilus, Richards Shale

Why is the Scotian Shelf HC endowment so small? (& depleted field CCS)

Important to understand the whole system – and underlying geologic controls

- Proven resource ~4 TCF recoverable gas (~2 TCF produced); ~60 MBO (~45 produced)*.
- > No issue with underfill 2011 OERA PFA has ~1000 TCF generated within ~100 km of Sable Is.
- Sable max. column heights (~200m) are much less than JdA & MD (~600m+) for two key reasons:
 - No 2nd & 3rd phase tectonics & with long term high sediment supply seals are relatively thin
- Shelf-margin rollover anticlines (18 of 25 fields) have limited dip closure heights (10-200m)
 - Fine balance between reservoir thickness, seal thickness & extensional crestal fault offsets
 - Immobile residual gas in breached traps same mechanism as CCS in deep saline aquifers

> No stratigraphic traps discovered on the Scotian Shelf

- Clastic reservoir quality improves updip (proximally) & carbonate bank "dips wrong way"
- Opposite to WCB foreland basin e.g. updip shale-out of clastic shorelines & carbonates
- No Cenozoic reservoir influx like North Sea or Mackenzie Delta / GOM (Laramide tectonics)
 - Again related to lack of late tectonics in hinterland
 - Good news for CCS topseal
- Bad news is that we may find unexpected hydrocarbon traps updip (probably oil)
 - Fluvio-estuarine channel traps like Glauconitic channel play in Alberta
 - Regional biogenic subcrop traps like Kern River in California or Athabasca anticline

Comparison of Maximum Hydrocarbon Column Heights

NOVA SCOTIA

*CNSOPB: Cumulative Production + 2014 SDL study P50 resources * Fortune Bay, White Rose, Nautilus, Richards Shale

Scotian Shelf: Schematic distribution of fields & CCS play elements

Figure 3: Stratigraphic distribution of discoveries.

Modified from OERA PFA, 2011

Deep Saline Aquifers Vs Structural Traps

Will not move - even if topseal is breached

 Insufficient buoyancy to exceed capillary entry pressure to next pore

Zero relative permeability at residual saturation

Scale of Sable Island Delta – and deep saline aquifers on Scotian Shelf

- Sourced from the North
- Progressively overwhelmed and interfingered with the underlying Abenaki-Roseway
 Carbonate Bank
- Comparable area to major modern deltas
- Analogue Fly River Delta/ Great Barrier Reef

Nile Delta

Major deltas: comparison of surface area (Klausen et al, 2019)

Scotian Shelf: Storage in Depleted and Stranded Fields (Ranked by size)

- **3** Decommissioned projects & 15 stranded fields \geq
- **Material Balance Approach** \succ
 - Storage Capacity = Production * 1 / FVF * E * Density
 - Storage Capacity = P50 Resource * 1 / FVF * E * Density
 - Storage efficiency factor (E) from 2009 IEA GHG report
- Need probabilistic assessment \geq

	Depleted fields	CNSOPB publish produc	ed cumulative tion.	Estimated weighted FVF (Estimated from Dev. Plans)	CO ₂ Storage Density=0.7 E= 75%
		BCF / MB0	10 ³ sm3	sm ³ /rm ³	Mt CO ₂
5 Sable Gas	Alma	516	14,612,931	250	30.7
	Venture	494	13,977,451	350	21.0
Project Fields	Thebaud	501	14,194,298	360	20.7
	S.Venture	315	8,908,194	285	16.4
	North Triumph	292	8,273,692	300	14.5
	Sub-Total	2118	59,966,566		103.2
Abenaki Projects	Deep Panuke	147	4,170,559	400	5.5
	CoPan	44	7,066,810	0.8	4.6
	Total	2265	131,170,500		113.4
	Stranded Gas Fields (if depleted)	CNSOPB SDL Report (2014) P50 Resources		Estimated weighted FVF (Estimated from report)	CO ₂ Storage Density=0.7 E= 75%
		BCF	10^9 M3	sm ³ /rm ³	Mt CO2
Strandod Eiolde	Glenelg	508	14.4	270	28.0
Strailueu Fielus	Onondaga	304	8.6	250	18.1
> 5Mt	Primrose	127	3.6	160	11.8
	Banquereau	170	4.8	280	9.0
	Citnalta	172	4.9	290	8.8
	West Sable	93	2.6	170	8.1
	Olympia	143	4.1	350	6.1
	Arcadia	158	4.5	400	5.9
	Chebucto	66	1.9	275	3.6
	Intrepid	54	1.5	260	3.1
Stranded Fields	West Venture N-91	68	1.9	385	2.6
< 5Mt	West Olympia	30	0.8	330	1.4
SUTT	West Venture C-62	31	0.9	375	1.2
	Uniacke	20	0.6	405	0.7
	South Sable	8	0.2	265	0.1
	Total	1952.0	55.3		108.8

NOVA SCOTIA

Deep Panuke and CoPan (Cohasset- Panuke)

- Short HC columns low volumes low potential
- > Deep Panuke
 - Closure <30m in carbonate raised-rim
 - Complex reef-front diagenesis low K lagoon
 - Watered out early with a ~15% recovery factor
 - Recovered 145 BCF

- Panuke & Cohasset
 - Multiple low relief (<20m) clastic drapes over raised-rim
 - Recovered 44.5 MBO
 - 46% Recovery Factor

Seismic line & schematic section over Deep Panuke (Weissenberger et al, 2000)

Static models of Panuke-Cohasset (via Lasmo development plan – Dalhousie)

Depleted Sable Gas Fields: CCS Ranking

> Alma & N. Triumph are ranked best: shallow, hydrostatic, single reservoir fields. Thebaud and Venture overpressured.

Alma, & South Venture Fields (Hydrostatic)

Alma Field: U Missisauga reservoir, ~2900m

Good candidate for CCS: 31 Mt in one reservoir (North Triumph similar)

South Venture: L-M Missisauga reservoirs, ~3600-4300m

 $\angle \bigcirc$

16 Mt in multiple low relief pools - hard to contain for CCS

Venture Field

- Complex depletion pressures & overpressure issues for drilling and CCS
- Expansion trends are "pressure valves" between overpressured slope & hydrostatic shelf
- Dip line: stacked gas in hanging wall "sand traps"
- Pressure & gas influx from adjacent blocks

1995 Field Development Plan

- Venture Sand 3: high amplitude near bounding fault
- Gas influx and cross-fault outflux at West Venture

 Have to explain "stepped" overpressures from "leak off" → "hydrostatic"

- Modeled by gas injection into sands 6,7,8
- Matched overpressures during inflation & deflation

Overpressure Model - Venture B-52: orosity 0-0.25 Samma Ray Pressure Modeled ε 0-150 SS Sand 40-140 Pressure TVD mPa 40-140 Well Data mPa Year 2000: hydrostatic Year 2100 Year 4000 4500 Year 5900 DSTs 3ab 3c LOTS NOVA SCOTIA

Well Logs

Pressures

Observed Modelled

Stranded Sable Gas Fields (SDLs): CCS Ranking (> 5 Mt scCO₂)

Stranded Sable Gas Fields (SDLs): Glenelg, West Sable & Citnalta (CNSOPB,2014)

- > Shallow, hydrostatic reservoirs look good but footwall diapirs and stacked multiple compartments create complications
- > Glenelg: ~3250-3800m

West Sable: hydrostatic, ~1350-2300m

Citnalta: hydrostatic, ~3700-4000m

NOVA SCOTIA

Scotian Shelf: Deep Saline Aquifers – Scoping assessment

	Length	Width	Inte	rval	Shape	GRV	NTG	Phi	NPV	1-SWirr	CO ₂	Storage	CO ₂ Storage
	10 ⁶ m	10 ⁶ m	m	m	factor	10 ⁹ m ³			10 ⁹ m ³		gm/cc	Efficiency	Gt (10 ⁹ tonnes)
ML	650	150	-800	-4000	0.5	78,000	0.5	0.18	7,020	0.90	0.7	0.04	177
Low	550	100	-1000	-3000	0.4	22,000	0.4	0.14	1,232	0.85	0.65	0.02	14
High	750	180	-800	-5000	0.6	170,100	0.6	0.22	22,453	0.95	0.75	0.08	1280

Storage Capacity = GRV * NTG * PHI * E * Density sCO₂

- Gross Rock Volume (GRV=Area * Thickness * Shape Factor)
- Net-to-Gross (NTG=net porous thickness / gross thickness)
- > NPV =Net Pore Volume
- Storage efficiency factor (E=Stored CO₂ / Pore Volume)
 - Typical ranges are published in CCS atlases

Scotian Shelf: Deep Saline Aquifers – Petrel Workflow

7 horizons / unfaulted 6 zone framework (Pillar Gridding - Make Horizons - Make Layers)

Sonic Porosities with Vshale cutoffs

80 wells (of 210 on the margin)

Porosity Model Layered, Scaled up well logs and populated model (Property Modeling – SGS etc)

Algorithm	Storage Efficiency	Low Vsh<30%	Med Vsh<50%	High Vsh< 70%
Moving Average	E=5%	77	250	588
	E=3%	46	150	353
	E=1%	15	50	118
SGS	E=5%	125	257	483
100km, 200km, 10m	E=3%	75	154	290
72 degrees	E=1%	25	51	97
SGS	E=5%	187	353	618
640km, 400km, 30m	E=3%	112	212	371
72 degrees	E=1%	37	71	124

Set depth limits and areas

Calculated NPV & Storage Capacity

NOVA'S

Deep Saline Aquifers: Structural Framework

Structural Data: from the 2011 PFA and the 1991 Cant GSC Atlas (online)

- Unfaulted horizons are fine for static model need faults for dynamic modeling
- 7 horizons, 6 Zones 3 of which are populated with porosity
- Area: ~600*150 km
- 2 x 2 km grid; 1500 layers; 67 million cells

Deep Saline Aquifers – Porosity Calculation (Petrel Calculator)

Porosity (80 wells, of ~210 on the margin)

- Vshale from Gamma Ray
- Sonic Porosity >10%, matched to core data, with 30, 50, & 70% Vshale cutoffs

Deep Saline Aquifers – Property Modeling

Porosity Model

Scaled up porosity and propagated porosity throughout the model

- Sequential Gaussian Simulation with 72 degree azimuth. Anisotropy: 150km major & 100km minor axes, 30m vertical
- Can see shelf-margin trajectories & large-scale progradational, aggradational, retrogradational stacking patterns

Deep Saline Aquifers – QC, Volume Calculations & Comparison to NE USA

Porosity Thickness (Phi-m)

- QC via Quality Assurance Maps
- Storage Capacity (Gt) with a range of algorithms, storage efficiencies & Vshale parameters

Algorithm	Storage Efficiency	Low Vsh<30%	Med Vsh<50%	High Vsh< 70%
Moving Average	E=5%	77	250	588
	E=3%	46	150	353
	E=1%	15	50	118
SGS	E=5%	125	257	483
100km, 200km, 10m	E=3%	75	154	290
72 degrees	E=1%	25	51	97
SGS	E=5%	187	353	618
640km, 400km, 30m	E=3%	112	212	371
72 degrees	E=1%	37	71	124

• Depth Range 800-4000m subsea; Phi cut off 10% ; Density 700kg/m³

- Base Case Comparison to Batelle study (NE USA Atlantic margin)
 - Significant variations in CCS ranges are normal even within the same organisations (Kearns et al. 2017)

US NE Mai	r <mark>gin</mark>				Scotian She	e <mark>lf (800 to 40</mark>	00m)		
	NPV (km ³)	E	Density	Gt		NPV (km ³)	E	Density	Gt
MK1-3	3,668	0.05	0.815	149	K94-K125	2148	0.03	0.7	45
LK1	4,635	0.05	0.809	187	K125-J150	3369	0.03	0.7	71
UJ1	6,511	0.03	0.796	155	J150-J163	1683	0.03	0.7	35
	14814			492		7200			151

Preliminary Dynamic Modeling of Highgraded Area (Dalhousie)

- > 3 * 4 Mtpa injected below Naskapi Shale for 50 years
- Plumes reach residual saturations after ~1000 years
- Model needs imbibition curves & channel architecture known from 3D seismic data

Logan Canyon Stacked Channels (RMS Interval Amplitudes) ~ 30 well penetrations, all high phi-k channel sands

Historical Infrastructure (from field development plans)

- Decommisioned fixed & floating facilities.
- > 2 abandoned offshore pipelines in place (useable?). Onshore pipeline reversed
 - CoPan: Lasmo, 1992-1999; 44.5 MBO 5 BCF
 - Two steel jackets, subsea flowline with a jack-up drilling unit.
 - Production via an FPSO and shuttle tankers.
 - Sable: Exxon Mobil, 1998-2018: 2.1 TCF
 - Fixed platforms removed: pipeline from Thebaud to mainland abandoned in-place, unclear if re-useable (?). Maritimes and NE pipeline gas flow has been reversed

Deep Panuke: Encana, 2015-2018, 147 BCF

• Jack-up platform with subsea tiebacks. Pipeline still in place (?) Useable (?)

Offshore CCS Considerations

Some idea of costs from a 2021 Rutgers study – NE & Midwest USA

- Offshore CCS ~ \$60/t all-in from coal-fired power plants (Schmelz et al, 2021)
- Sable CCS wells could have twice the revenue of historical Sable gas wells
 - 0.7 Mtpa, 30 years, \$100/t credit → ~ \$2 billion
 - 100 BCF Sable Gas well at 10/MCF → ~ \$1 billion (22 wells, 2.1 TCF cum.)
- > Looking at a huge drilling investment if we want to take AGW seriously
 - <u>7 Gtpa target (IEA 2DS 2050)</u> requires >10,000 x 0.7 Mpta injection wells (Ringrose & Meckel 2019)
 - <u>Drilling Cost \$500 B at \$50M per well (maybe cheaper with economies of scale)</u>
- But an even bigger anticipated market \$4T CCS by 2050 (XOM)
 - Planned clusters in Europe and N. America with pore-space land-grabs in GOM
- > Offshore CCS ready to take off

- Currently 3 operational offshore CCS projects
- Current Global emissions ~40 Gtpa; Storage ~40 Mtpa
- Global storage capacity ~ 8-55 Tt (IEA, 2021)
- Emissions since 1750 >1.7 Tt* Canada 2%, USA 24%, EU
 - 21%, China 14%

Conclusions and Next Steps

- Excellent geologic and strategic attributes
 - Storage, containment, injectivity access to USA & Europe
- ~100-200 Gt resource in deep saline aquifers
 - Highgraded area
 - Requires "next-level" expert static & dynamic modeling & potential new data acquisition
 - Geo-spatial modeling; core analysis; rock physics; 3D / 4D seismic
 - Probablistic assessments & a static resource atlas
- ~100 Mt resource in depleted fields
 - "Best" depleted fields are Alma & N. Triumph
- Potential for multiple phased commercial strategies
 - 1-4 well pilot projects (similar to Snohvit or Aurora)
 - Regional (5-100 wells)
 - Intercontinental (100 + wells)
 - Integration with "Energy Corridor" (Dusseault & Wach, 2021)

See.

Email: Billrichards888@hotmail.com

Key References

General

IPCC [2005]. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.

Bachu, **S.** [2003]. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environmental Geology, 44, 277-289.

Bradshaw, J. and Dance, T. [2005]. Mapping geological storage prospectively of CO2 for the world's sedimentary basins and regional source to sink matching. In Greenhouse Gas Control Technologies, 7, 583-591.

IEAGHG [2009]. CO2 Storage in Depleted Gas Fields (Issue 2009/01).

NPD [2019]. Norwegian Petroleum Directorate. CO2 storage Atlas Norwegian North Sea.

Ringrose, P.S. and Meckel, T.A. [2019]. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Scientific reports, 9(1), pp.1-10.

U.S. Department of Energy [2010 & 2015]. Carbon Sequestration Atlas of the United States and Canada.

Vidas, H. et al. [2012]. Analysis of the Costs and Benefits of CO2 Sequestration on the U.S. Outer Continental Shelf. Prepared Under BOEM Contract M10PC00117 by ICF International.

Schmellz, W.J., Hochman, G., Miller, K.G., [2020]. Total cost of carbon capture and storage implemented at a regional scale: north-eastern and midwestern United States.

https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0065

Wright, R, et al. [2013]. The First North American Carbon Storage AtlasSequestration on the U.S. Outer Continental Shelf. Prepared Under BOEM Contract M10PC00117 by ICF International.

Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment Project

DOE Project Number: DE-FE0026087 Battelle Project Number – 100068380 https://netl.doe.gov/sites/default/files/netl-file/0350-Gupta-MidAtlanticOffshore-DOEreview-2019-final.pdf https://www.osti.gov/biblio/1566748 (full report)

Bennion, D.B., Bachu, S. [2008]. Drainage and Imbibition Relative Permeability Relationships for Supercritical CO2/Brine and H2S/Brine Systems in Intergranular Sandstone, Carbonate, Shale, and Anhydrite Rocks. SPE Reservoir Evaluation and Engineering 11, 487–496.

Bachu, **S.**[2013]. Drainage and imbibition CO2/brine relative permeability curves at in situ conditions for sandstone formations in western Canada

Burnside, N.M., Naylor, M. [2014]. Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2. International Journal of Greenhouse Gas Control 23 (2014) 1-11.

Kearns, et al,. [2017]. Developing a Consistent Database for Regional Geologic CO2 Storage Capacity Worldwide. Energy Procedia 114 (2017) 4697 – 4709

New Brunswick & Bay of Fundy

LeBlanc et al., [2011] Application of Propane (LPG) Based Hydraulic Fracturing In The McCully Gas Field, New Brunswick, Canada. SPE 144093

St. Peter, C. [2000] OIL AND NATURAL GAS IN NEW BRUNSWICK: HISTORICAL AND CURRENT INDUSTRY-RELATED ACTIVITIES

Source: Oil shales and oil and natural gas in New Brunswick: Historical and current industry related activities. New Brunswick Department of Natural Resources and Energy, Minerals and Energy Division, Information Circular 2000-5, 14 p. <u>https://www2.gnb.ca/content/dam/gnb/Departments/en/pdf/Minerals-Minerales/ONG_History-E.pdf</u>

Wade, J.A., Brown, D.E., Traverse, A., Fensome, R.A. [1996] The Triassic-Jurassic Fundy Basin, eastern Canada: regional setting, stratigraphy and hydrocarbon potential. Atlantic Geoscience Vol 32 No 3

Key References

Nova Scotia

Cant, D. [1991]. East Coast Basin Atlas Series: Scotian Shelf; Atlantic Geoscience Centre, Geological Survey of Canada.

Wach, G.D., Zentilli, M., Pothier, H.D., [April,2010]. Assessment of Prospective Sites for the Geological Storage of CO2 Nova Scotia (Report) Poster - <u>https://cdn.dal.ca/content/dam/dalhousie/pdf/sites/sustainable-</u> energy/Carbon%20Storage%20Poster.pdf

Chakraborty, A., Barbosa, M.R.S., Rizk, A.S.M., Watts, K., Richards, B., Wach, G.

[2022]. Minus CO2 Challenge 2021/2022 – Student teams evaluate potential worldclass carbon storage resources offshore Nova Scotia, Eastern Canada. First Break Volume 40, April 2022.

O'Connor, D., Richards, B., Angel, M. and Wach, G. [2019]. Dynamic Modelling of Buoyant Fluid Flow in Rollover Anticlines, Offshore Nova Scotia, Canada: Implications for Hydrocarbon Distribution, Potential Carbon Capture and Storage (CCS) and Future Activity in the Sable Subbasin. Energy3 Canada's Energy Conference, Halifax, Nova Scotia. October 16-18, 2019. https://cdn.dal.ca/content/dam/dalhousie/pdf/sites/sustainableenergy/2019%20OConnor%20Richards%20Angel%20Wach%20Energy%203_DEO_ED ITS.pdf

Kendell, K. and Deptuck, M. [2012]. Lower Cretaceous shelf-edge trajectories, shelf-indenting canyons, and the potential transfer of coarser clastics into deeper water, Sable Subbasin, offshore Nova Scotia. Geoscience Open File Poster 2012-002PF. Canada-Nova Scotia Offshore Petroleum Board, 2 panels.

Kidston, A.G., Brown, D., Smith, B.M. and Altheim, B. [2007]. The

Upper Jurassic Abenaki Formation Offshore Nova Scotia: A Seismic and Geologic Perspective. Canada-Nova Scotia Offshore Petroleum Board, Halifax, 165p.

CNSOPB. [2014]. Brenton M. Smith, Carl Makrides, Brian Altheim and Kris Kendell. Resource Assessment of Undeveloped Significant Discoveries on the Scotian Shelf. Nova Scotia, Canada: Canada-Nova Scotia Offshore Petroleum Board. <u>https://www.cnsopb.ns.ca/sites/default/files/resource/sda_report_-</u> finalhighquality_april_3_2014.pdf GSC BASIN DATA BASE https://basin.marine-geo.canada.ca/

CNSOEB DMC https://cnsopbdigitaldata.ca/

CNSOPB [2022]. Directory of Wells

https://www.cnsopb.ns.ca/sites/default/files/resource/dow.pdf

CNSOPB. [2022]. Monthly Production Reports https://www.cnsopb.ns.ca/resource-type/monthly-production-reports

CNSOPB. [2022]. Cohasset-Panuke https://www.cnsopb.ns.ca/offshore-activity//legacy-productionprojects/cohasset-panuke

CNSOPB. [2022]. Sable Offshore Energy Project

https://www.cnsopb.ns.ca/offshore-activity/current-activity/sable-offshore Sable Offshore Energy Ltd. [1995]. Sable Offshore Energy Project Development Plan Application, Volumes 1-5.

CNSOPB. [2022]. Deep Panuke

https://www.cnsopb.ns.ca/offshore-activity EnCana [2006]. Deep Panuke Offshore Gas Development Plan.

https://oera.ca

https://oera.ca/research/play-fairway-analysis-atlas. https://oera.ca/research/sydney-basin-play-fairway-analysis-atlas-2017. OERA, 2011. Atlas. Play Fairway Analysis Offshore Nova Scotia Canada. OERA, 2017. Sydney Basin Play Fairway Analysis. OERA, 2019. Shelburne Basin Postmortem Analysis.

Richards, B., Fairchild, L.H., Vrolijk, P.J., Hippler, S.J. [2008] Reservoir

Connectivity Analysis, Hydrocarbon Distribution, Resource Potential & Production Performance in the Clastic Plays of the Sable Subbasin, Scotian Shelf

https://www.cmcmorocco.com/cmc-archives (Archives 2008 Conjugate Margins Conference)

Bibby.C., **Shimeld, J.**, **[2000]**. Compilation of Reservoir Data for Sandstones of the Devonian-Permian Maritimes Basin, Eastern Canada. GSC Open File Report 3895.

Department	NSDOE OFR 2017-05 - Cumberland Basin Lower Carboniferous Source Rock Project
Publications	Cumberland Basin Lower Carboniferous Source Rock project pdf 2,749 KB
lideos	Appendix 1 - Sample Images pdf 594 KB Appendix 2 - Palynotacies counts odf 340 KB Appendix 3 - Palynomorph occurrence table per sample pdf 511 KB Appendix 4 - Pyrolysis results per sample pdf 3,475 KB Appendix 5 - Tava illustration pdf 2,365 KB Appendix 6 - Raw data and histograms of the measured vitrinite relectance per sample pdf 511 KB
	Declaimer bit 2 KB
	NSDOE OFR 2017-06 Seismic Interpretation in the Windsor Basin
	Seismic Interpretation in the Windsor Basin pdf 21,708 KB Appendix 1 - Mags pdf 2,009 KB Appendix 2 - Cross sections, pdf 1,670 KB Appendix 3 - Composite Lines, pdf 3,347 KB Appendix 4 - Well Ties, pdf 2,485 KB Disclaimer txt 2KB
	NSDOE OFR 2017-07 Schedule of 2D Seismic Data, Onshore Nova Scotia
	Schedule of 2D Seismic Data, onshore Nova Scotia - Part 1 - Cape Breton region pdf 101,119 KB Schedule of 2D Seismic Data, onshore Nova Scotia - Part 2 - Cumberland region pdf 154,452 KB Schedule of 2D Seismic Data, onshore Nova Scotia - Part 3 - Windsor region pdf 61 901 KB Appendix 1 - List of seismic lines pdf 75 KB Appendix 2 - List of seismic surveys pdf 64 KB Disclaimer.txt 2KB
	NSDOE OFR 2017-08 Schedule of Petroleum Wells, Onshore Nova Scotia
	Schedule of Petroleum Wells, onshore Nova Scotia - Part 1 - Cape Breton region pdf 3 168 KB Schedule of Petroleum Wells, onshore Nova Scotia - Part 2 - Cumberland region pdf 4 045 KB Schedule of Petroleum Wells, onshore Nova Scotia - Part 3 - Windsor region pdf 3 168 KB Disclaimer txt 2 KB
	NSDOE OFR 2017-09 Preliminary petroleum well log database, onshore Nova Scotia
	Preliminary petroleum well log database, onshore Nova Scota - Part 1 - Cape Breton region zip (LAS files) 4.724 KB Preliminary petroleum well log database, onshore Nova Scota - Part 2 - Cumberland region zip (LAS files) 15.773 KB Preliminary petroleum well log database, onshore Nova Scota - Part 3 - Windsor region zip (LAS files) 43.353 KB Disclaimer bt 2KB
	NSDOE OFR 2017-10 Preliminary petrophysics database, onshore Nova Scotia
	Preliminary petrophysics database, onshore Nova Scotia - Part 1 - Outcrop Data pdf 527 KB Preliminary petrophysics database, onshore Nova Scotia - Part 2 - Viell Data pdf 566 KB Supporting notes; pdf 81 KB Disclaimer bdf 2 KB
	NSDOE OFR 2017-11 Navigation data for 2D Seismic lines, onshore Nova Scotia
	Navigation data for 20 seismic lines, onshore Nova Scolia - Part 1 - Cape Breton region zio (shapefile) 1051KB Nova Scolia - Part 1 - Cape Breton region zio (shapefile) 1051KB

Navigation data for 2D seismic lines, onshore Nova Scotia - Part 2 - Curspertand region zip (shapetile) 1909 KB
 Navigation data for 2D seismic lines, onshore Nova Scotia - Part 3 - Windsor region zip (shapetile) 274 KB

Discialmer.bd 2KB

37

NSDOE OFR 2017-09 Preliminary petroleum well log database, onshore Nova Scotia

- Preliminary petroleum well log database_onshore Nova Scotia Part 1 Cape Breton region zip (LAS files) 4724 KB
- Preliminary petroleum well log database_onshore Nova Scotia Part 2 Cumberland region zip (LAS files) 15.773 KB
- Preliminary petroleum well log database_onshore Nova Scotia Part 3 Windsor region zip (LAS files) 43:353
 KB
- Disclaimer bd 2KB

NSDOE OFR 2017-10 Preliminary petrophysics database, onshore Nova Scotia

- Preliminary petrophysics database, onshore Nova Scotia Part 1 Outcrop Data pdf 527 KB
- Preliminary petrophysics database, onshore Nova Scotia Part 2 Well Data pdf 568 KB
- Supporting notes pdf 81 KB
- Disclaimer bd 2 KB

			The second second			Que I			- 1	Permeabili	ty
Well_ID	Well Name	Sample_ID	Company	Year	Group	Formation	Depth_top (m)	Porosity	K(max)	K(90)	K(vertical)
P-121	Milford Station #1		EOG Resources Inc.	2005	Horton		810.00	0.060	0.06	0.05	<.01
P-121	Milford Station #1		EOG Resources Inc.	2005	Horton		\$10.8\$	0.056	0.06	0.04	<.01
P-121	Milford Station #1		EOG Resources Inc.	2005	Horton		811.17	0.073	0.14	0.09	<.01
P-121	Milford Station #1		EOG Resources Inc.	2005	Horton		811.45	0.117	0.33	0.21	0.15

e.g.

https://energy.novascotia.ca/oil-and-gas/offshore/play-fairwayanalysis/analysis

I		Annex
Home		
Renewables	The Analysis	 Annex 1: Well List Directory – (52.9 KB)
Energy Efficiency	Play Fairway Analysis Atlas	 Annex 2: Well Database for Workstations – (492.6 MB)
Oil and Gas	Below are the links to the current chapters of the Nova Scotia Play Fairway Analysis (PFA) Atlas. These chapters provide the results of the PFA. However, some are unfinished slides. Although scientifically accurate, the	 Annex 3: Well Data Package – (1.0 GB)
▼ Offshore	presentation will be polished over the coming weeks to provide improved context and readability.	 Annex 4: Well Log Results – (77.6 KB)
Petroleum Resources	Documentation of the Play Fairway Analysis is at an advanced stage. Interpreted material in digital format is also	Appay 5: Decenyair Droportion (117.1 KB)
Play Fairway Analysis	being prepared, which will enable interested parties to conduct due diligence and modify interpretations as desired.	Annex 5. Reservoir Properties – (117.1 ND)
The Analysis	Our intention is to make digital material available in two tomits.	 Annex 6: Petroleum Results – (470 KB)
Central Scotian	1. Separate files containing	 Anney 7: References and Bibliography – (248.2 KB)
Slope	1. Grid files for time, depth, isochron and isopach maps.	
Shelburne Basin	2. Synthetic seismograms in SEG-Y format	 Annex 8: Report: Pe-Piper Sedimentology – (2.1 KB)
Sydney Basin	4. Well tops	 Anney 0: Deport: A. Karim, G. De Diper, D. J.W. Piper Sedimentology – (260 MB)
Ottshore	5. Composite logs	 Affilex 3. Report. A. Raffin, G. Fe-Fiper, D.V.W. Fiper Southentology – (200 mb)
Coring	6. Geochemistry data, and	 Annex 10: Report: Beaumont Salt Tectonics – (29.7 MB)
Project 2015	2. GIS database containing the above as well as various seismic and geological maps (DDC), ORD and seismic facine maps/lit is expected that the individual file compilation will be available shortly. It is the expected that the	Ameri 44. Denert Hasley Eluid Isslusions (4 MD)
Laurentian Sub-	GIS database will be completed by the end of the summer with the final version of the complete Play Atlas	Annex TT. Report. manley Fluid inclusions – (T MD)
basin	available on this website by the end of the summer.Due to the size of the images within the PFA, please	 Annex 12: Report Kettanah Fluid Inclusions – (28.2 MB)
Call for Bids	expect long download times. If you are unable to download the files, please <u>contact us</u> for assistance or to	America 40: Departs Citized Dista Testavia Departmention (EA 4 MD)
Data and Presentations	request a DVD copy.	 Annex 13: Report: Sibuet Plate Tectonic Reconstruction – (54.1 MB)
Events	<u>Atlas Title</u> – (421.4 KB)	 Annex 14: Report: Louden Refraction – (11.7 MB)
Mour	Executive Summary – (447.2 KB) Acknowledgements – (231.1 KB)	
Ocation	<u>Table of Contents</u> – (116.5 KB)	 <u>Enclosures</u> – (157.5 MB)
Contact	<u>Chapter 1: Introduction</u> – (40.7 MB)	
New Geoscience	<u>Chapter 2: Plate Tectonics</u> – (12.2 MB) Chapter 2: Stentionable (412.5 MB)	
Dublic Education	Chapter 3. Straugraphy – (112.5 Mb) Chapter 4: Petroleum Geochemistry – (10.9 MB)	✓ "□ Anney-03 Well Data Package zin.
Public Education	<u>Chapter 5: Seismic Interpretation</u> – (963.7 MB)	
Regulating Activities	<u>Chapter 6: Tectono-Stratigraphic Evolution Petroleum Systems</u> – (1.6 GB)	Annex-03_Well_Data_Package
Economic Benefits	<u>Chapter 7: Basin Modeling</u> – (39.6 MB) Chapter 8: Petroleum Evaluation – (228 4 MB)	CE 01 DMC well collection markers original
Resources and	Chapter 9: Late Jurasic Carbonate Play Fairway Analysis Addendum to Play Fairway Analysis (862.7 MB)	> " UI_DMC_weil_collection_markers_original
Publications Onshore	Geophysical Data	
Nova Scotia's LNG	PFA ISOPACH Grids – (7.4 MB)	
Opportunity	PFA TVDSS Grids – (7.9 MB)	
Consumer Natural Gas	<u>PFA TWT Grids</u> – (7.6 MB) <u>Synthetics</u> – (0.3 MB)	04_Biostratigraphic_well_log_charts_Nov_2010_RPS
Geoscience and Mines	 <u>Time Depth Data</u> – (2.9 MB) Operative interventing (1) the This is a large datifier. Dispace right disk the link and save it to your hard drive) 	> ·· 🔚 05_PHI_K_core_analysis
Electricity	2D Seismic Interpretation (Note: This is a large .dat file. Please right-click the link and save it to your man unve; 3D Seismic Interpretation	
Industry Development	GIS Data	O
Career Development	<u>ARC GIS Data</u> – (266 MB)	07_weii_reniplate_xsect_bible_intes_2011_bit

ComoP21.pm ComoP21.xls Core Analysis Data - All Wells.XLS DauntlessD35.pm DauntlessD35.xls

AcadiaK62.prn
AcadiaK62.xls
AlbatrossB13.prn AlbatrossB13.xls AlmaF67.prn AlmaF67.xls AlmaK85.xls

Arcadia J16.xls BalmoralM32.prn BalmoralM32.xls BanguereauC21.prn BanquereauC21.xls Bluenose2G47.prn Bluenose2G47.xls BonnetP23.prn BonnetP23xls.xls ChebuctoK90.prn ChebuctoK90.xls ChinampasN37.xls ChippewaL75.prn CitadelH52.prn CitadelH52.xls CohassetA52.prn CohassetA52.xls CohassetCP 1P51.prn CohassetCP 1P51.xls CohassetL97.prn CohassetL97.xls

Backup

World-class offshore deep saline aquifers

- Size, strategic position, infrastructure, water depth, iceberg-free
- Injectivity, capacity, containment
- Low seismicity passive margin, hydrostatic aquifers
- Data base, regional & field studies, offshore engineering experience

Infrastructure, reservoir-seal pairs & quality (Wach et al, 2010)

Table 4 : Geological Carbon Sequestration- Pros and Cons of the Maritimes and Scotian sedimentary basins.							
Maritimes	Pros	Cons					
Fundy G	Good Porosity	Farther from emission sites					
Cumberland C	Close proximity to emission site (Trenton)	Low Porosity and Permeability					
Magdelen C	Close proximity to emission site	Low Porosity and Permeability					
Sydney C	Close proximity to emission site	Low Porosity and Permeability					
Scotian	Pros	Cons					
Orpheus fo	Close proximity to emission site; potential or salt seal	Offshore pipeline and monitoring survey needed					
Sable P	Pipeline in place and good porosity	Far from emission sites					
Abenaki	Pipeline in 2010; planned H2S injection site	Far from emission sites					

Backup

Vidas, H., B. Hugman, A. Chikkatur, B. Venkatesh. 2012. U.S. OCS Study BOEM 2012 (ICF International)

Source: 2010 NATCARB Atlas with ICF allocations. The regional breakout was only partially documented in the NATCARB Atlas. The values for offshore saline potential in the Pacific and Atlantic are ICF estimates based upon analysis of the Atlas

2015 NETL 5th Atlas

													pine	ILa
		C	O ₂ Station	ary Sour	ce Emissio	ons and Q	O ₂ Stora	ge Resou	urce Estin	nates Su	mmary*			
State/ Province	CO, Emi	ssions	Oil and N St	latural Gas R orage Resou	leservoirs irce	Ui Ste	nmineable C orage Resou	oal Irce	Saline Formation Storage Resource		Total	otal Storage Resource		
	Million Metric Tons Per Year	Million Nu	Number	Bi	lion Metric T	ons	Billion Metric Tons		Billion Metric Tons		Billion Metric Tons			
		Metric Tons of Per Year Sources	Low Estimate	Medium Estimate	High Estimate	Low Estimate	Medium Estimate	High Estimate	Low Estimate	Medium Estimate	High Estimate	Low Estimate	Medium Estimate	High Estimat
Nabama	91	134	0.06	.09	0.12	1.92	2.98	4.37	120.22	307.34	689.67	122.20	310.41	694.16
Alaska	18	63	1	-		8.64	13.44	19.75	2	-	1	8.64	13.44	19.75
Alberta	137	182	0.60	(1.49)	3.57	0.03	0.03	0.03	38.17	76.74	140.30	38.80	78.26	143.90
	-			~						V				

CO₂ Sequestration Potential Gigatonnes Non-EOR CO2 Coal Seams Saline Formations Assessed Total Depleted Enhanced Oil and Oil Calc. Calc. Region ecovery High Midpoint Low High Midpoint High Midpoint 105 Williston Basin and Western Canad 24.4 0.6 1.0 1.0 1.0 165 191 191 Illinois Basin 0.1 1.6 3.3 2.5 12 164 89 0.9 86 15 Michigan and Appalachia 0.8 1.9 46 183 64 202 0.1 1.4 133 908 973 Gulf Coast, GoM, and Atlantic Offsh. 28.8 3.2 33.0 75.0 54.0 12,526 6,717 12,633 6,803 1.2 82 California, Pac. NW, Pac. Offsh., AK 2.8 10.0 23.0 16.5 1,124 603 96 1,151 624 S. Rockies, Mid-Cont., West Texas 51.2 10.7 1.0 2.0 1.5 219 3,013 1,616 282 3,077 1,679 N Rockies, W. Montana 12.0 12.0 221 3.041 235 3,055 1.6 0.6 12.0 1.631 1,645 1,653 1,856 North America Total 126.6 16.5 59.4 118.2 88.8 20,212 10,933 20,473 11,164 9.0 21.0 15.0 0 9 21 Alaska 0.0 0.0 0 0 15 Canada 0.8 0.8 0.8 38 51 57 70 18.0 0.0 44 63 L48 Total 108.6 16.5 73.0 49.6 96.4 1,614 20,163 10,889 1,790 20,383 11,087 onshore 93.6 15.0 48.3 93.3 70.8 1,123 13,407 7,265 1,280 13,609 7,444 offshore 1.5 1.3 3.1 491 6,756 3.624 509 6,776 3,643 15.0 2.2

Sources: 2010 NATCARB Atlas for all except CO2 EOR, which is an ICF estimate based upon DOE assessments of EOR potential.

blbort

UK North & Irish Sea	
P50	GT
CNS	40
SNS	15
NNS	14
EIS	6
Units under 20Mt	3
	78
O&G Fields	8
Aquifers	70
NPD. Bentham.	

		1
Utsira Skade	15.8	
Bryne/Sandness	s 1 3 .6	
Sonjefjord Delta	a East 4.1	
Statfjord Fm. Ea	st 3.6	
Gassum	2.9	
Farsund	2.3	
Johansen and Co	ook 1.8	
Fislebank	1.0	
Strod	0.1	
Hugin East	0.1	
	45.3	
Fields	13.0	
	58.3	
	NOVA'SC	OTIA

Table 2 DOE NATCARB Regional Assessment of North America

Backup - 2017 Sydney Basin PFA Chapter 3

Porosity interpretation from CNSOPB (Track 13, Figure 5) in the Sydney Basin is close to 0%. An alternative porosity interpretation is provided by Beicip-Franlab (Track 14, Figure 5). The more optimistic porosity interpretation from the Beicip-Franlab was conducted according to observations from NMR logs in well P-140 CCS-NS, while the porosity interpretation from CNSOPB is closer to the moveable fluid porosity. The representative porosity values per well and interval are shown in Table 3.

The basin petroleum system modeling requires a net-sand and a total porosity value per layer as well as an effective porosity value in reservoir layers. The values used in the basin petroleum system modeling will be chosen according to the petrophysical properties observed and gathered.

Figure 5: Raw and interpreted logs available

- Minimum PHIE value is 0% for all formations and both interpretations

Table 3: Maximum & average porosity values per formation

	PHIE values petrop interpr	from CNSOPB ohysical retation	PHIE valu petrop interpr	es from BF hysical etation	PHIT value	s from BF pe interpretatio	etrophysical an	
rmation	Max	Avg	Max	Avg	Min	Max	Avg	
tou	10%	0,5%	10%	0,8%	5%	21%	6,1%	
dney Mines	10%	0,3%	10%	1,0%	196	23%	6,4%	
addens Cove	10%	0,4%	10%	2,7%	296	19%	6,4%	
uth Bar	10%	0,3%	10%	2,796	1%	19%	5,7%	
ver Mines	10%	0,1%	10%	0,8%	296	17%	6,5%	
int Edward	10%	0,0%	10%	1,5%	096	24%	5,7%	
pe Dauphin	096	0,0%	6%	0,6%	296	9%	696	
oodbine Road	0%	0,0%	10%	1,2%	196	13%	696	
eadows Road	8%	3,3%	10%	1,4%	096	1496	4,4%	
dney River	10%	0,1%	9%	2,6%	096	12%	6,2%	

Government of Canada Gouvernement du Canada

42

8:00-8:30	Day 1, Wednesday April 19 th , Regi	stration &	Breakfast	Lord Dalhousie Room
8:30-9:30	Opening Remarks (IT Briefing at 8:20)			
	Setting the Scene – Carbon Neutrality	8:30-8:40	Grant Wach	Dalhousie University, Department of Earth and Env. Science:
	Welcome to Mi'kma'ki	8:40-8:50	Catherine Martin	Dal. U. Director of Indigenous Community Engagement
	Welcome to the Workshop	8:50-9:00	Russell Dmytriw	Director of Research, Net Zero Atlantic
	Introduction to the Nova Scotia Perspective	9:00-9:10	Adam MacDonald	NS Dept Natural Resources & Renewables (NSDRR)
	Setting the Stage – NS Provincial Perspective	9:10-9:20	Karen Gatien	Deputy Minister, NSDNRR
	Setting the Stage – Federal Perspective	9:20-9:30	Drew Leyburne	Assistant Deputy Minister, NRCan
9:30-10:00	Introduction to CCUS			
	What is CCUS?	9:30-9:50	Carla Skinner	Geological Survey of Canada, NRCan Research Scientist
	Discussion	9:50-10:00	ALL	Speakers/Delegates
10:00-10:30	Break			Lord Dalhousie Room
10:30-12:00	CCUS Opportunity			
	Geostorage	10:30-10:50	Maurice Dusseault	University of Waterloo, Dept of Earth and Env. Sciences
	Opportunity for Canada	10:50-11:10	Robin Hughes	Manager Industrial Decarbonization, NRCan
	Opportunity for Nova Scotia – Offshore	11:10-11:30	Bill Richards	Consultant to NSDRR
	The Path Forward	11:30-11:50	Saviz Mortazavi	Deputy Director, CCUS and Hydrocarbon Production, NRCan
12:00-13:00	Lunch and Group Photo			Lord Dalhousie Room
13:10-14:50	CCTS Regulation & Policy			
	Carbon Transportation and Storage Regulations	13:10-13:30	Brian Bylhouwer	Associate, Environmental Science, Stantec, PEI
	Nova Scotia Policy and Priorities	13:30-13:50	Melissa Oldreive	Manager, Strategic Priorities, NSDRR
	Searcher's Datasets to Support C Neutrality	13:50-14:10	Karyna Rodrigues	Vice President, Global New Ventures, Searcher Seismic
	The Role of Industry	14:10-14:30	Patrick MacDonald	Director Sustainability, Can. Assoc. of Petroleum Producers
	Propelling Canada Past Other Jurisdictions	14:30-14:50	George Kovacic	Advisor, Searcher Seismic
15:00-15:30	Break			Lord Dalhousie Room
15:30-16:30	Provincial Perspectives			
	Quebec Perspective & Vision	15:30-15:50	Robert Symonds	Research Scientist, NRCan CanmetENERGY-0
	Newfoundland Perspective	15:50-16:10	David Corkey	Dir. Petroleum Engineering, NL Dept Industry, Energy & Tech
	New Brunswick Perspective	16:10-16:30	Dave Keighley	Assistant Dean, Geology, University of New Brunswick
16:30-17:00	Discussion & Closing Remarks			
	The Path to Carbon Neutrality	16:30-16:50	Grant Wach	Dalhousie University, Department of Earth and Env. Sciences
	Thank You and Wrap Up Day 1	16:50-17:00	Russell Dmytriw	Director of Research, Net Zero Atlantic
17:00-18:00	Reception – All Welcome			Lord Dalhousie Room

Government of Canada

t Gouvernement du Canada

	Day 2, Thursday April 20th, Reg	istration & I	Breakfast	Lord Dalhousie Room					
8:30-10:00	CO2 Issues & Lessons from Others								
	Recap from Day 1	8:30-8:40	Grant Wach	Dalhousie University, Department of Earth and Env. Sciences					
	Geotechnical Constraints - Achieving the 2030 deadline	8:40-9:00	Richard Jackson	Principal, Geofirma Engineering Ltd.					
	CCS & Geostorage, Netherlands	9:00-9:20	Jaap Breunese	Principal Consultant, TNO Energytransition					
	Northern Lights, Norway	9:20-9:40	Cristel Lambton	CCS Project Manager, Low Carbon Solutions, Equinor					
	Acorn, UK Sector	9:40-10:00	Catherine Witt	Head of Subsurface, Storegga					
10:00-10:20	Break			Lord Dalhousie Room					
10:20-12:00	CO2 Issues & Lessons from Others								
	London Protocol	10:20-10:40	Michael Buckland-Nicks	Program Officer, Environment and Climate Change Canada					
	Norwegian Continental Shelf 2030 Project	10:40-11:00	Ying Guo	Senior Advisor, CCUS-IOR, Norwegian Research Centre NORCE					
	Workflow for Assessment (BC)	11:00-11:20	Brad Hayes	President, Petrel-Robertson Consulting Ltd.					
	Pore Volume Assessment	11:20-11:40	Graham Simpson	Vice President, Geosciences, GLI Engineering					
	Oceans and CO2	11:40-12:00	Lesley James	Memorial University, Faculty of Engineering and Applied Science					
12:00-13:00	Lunch			Lord Dalhousie Room					
13:00-15:20	CO2 Issues & Renewable Solutions								
	Geothermal – Heat (Power)	13:00-13:20	Cathie Hickson	CEO, Alberta No. 1 / Terrapin Geothermics					
	Boundary Dam, Sask	13:20-13:40	Erik Nickel	Chief Operations Officer, Petroleum Technol. Research Centre					
	CCS in Alberta Basin	13:40-14:00	Mahendra Samaroo	Senior Engineer, Alberta Department of Energy					
	Alberta Carbon Trunk Line	14:00-14:20	Jeff Pearson	President, Wolf Carbon					
	Maritimes Energy Corridor	14:20-14:40	Grant Wach	Dalhousie University, Department of Earth and Env. Sciences					
	Paleozoic Basins Potential	14:40-15:00	Trevor Kelly	Municipality of Cumberland					
and the second second	Natural Gas & Hydrogen	15:00-15:20	Jordan MacNeil	Manager, Business Development, Eastward Energy					
15:20-15:40	Break			Lord Dalhousie Room					
15:40-17:00	CO2 Issues & Renewable Solutions								
	Socio-Economic Issues	15:40-16:00	Jennifer Winter	Dept Economics & Public Policy, University of Calgary					
	The Role of Renewables	16:00-16:20	David Miller	Director, Clean Electricity NSDNRR					
	Supporting CCUS in Development in Canada	16:20-16:40	Carl Landry	Canada Infrastructure Bank					
	Closing Remarks	16:40-17:00	G. Wach/M. Dusseault	Dalhousie University / University of Waterloo					
17:00-18:00	Closing Reception			Lord Dalhousie Room					

https://www.dal.ca/sites/sustainable-energy/news---events/carbon-neutrality-forum/forum-review.html

Forum Review

Day I of the Carbon Neutrality Forum was a resounding success. Catherine Martin welcomed the delegation to Mi'kma'ki. This was followed by reviews of the federal and provincial